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A Generalized Lanczos Scheme 

By H. A. van der Vorst* 

Abstract. It is shown in this paper how the Lanczos algorithm can be generalized so that it 
applies to both symmetric and skew-symmetric matrices and corresponding generalized 
eigenvalue problems. 

1. Introduction. The Lanczos scheme, designed for the computation of approxi- 
mate eigenvalues of a symmetric matrix A (or order n), can be used also for the 
computation of eigenvalues of the product matrix CB, where C is symmetric and B 
is symmetric positive definite. This can be done simply by choosing another inner 
product, thus avoiding the necessity of constructing an LLk-decomposition of B. The 
algorithm in this form is closely related to an algorithm published by Widlund [1], 
for the solution of certain nonsymmetric linear systems. 

The generalized eigenvalue problem Cx = ABx can be reduced to the above form 
by CB- 'y = Ay. In this case the new Lanczos scheme is attractive if fast solvers are 
available for the solution of linear systems of the form By = z. The generalized 
algorithm is also applicable when C is skew-symmetric. This is achieved by introduc- 
ing a minus sign in the appropriate place. 

2. The Generalized Lanczos Scheme. Let A be of the form A = CB, where B is 
symmetric positive definite and C is either symmetric or skew-symmetric. 

Then choose an arbitrary vector v1, with (vl, v1)B = 1, and form u= Av1. Rows 

{vJ} {Oaj), {fj), and {yj} are then generated by 

j (VJ AvJ)B, w1 UJ _ ya+i (W W)B/, 
AJ+1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+ = Y+1 J1 - aj = (vj, Avvj?i 11i2 

UJ+1 = AvJ+ 1-8j+31vJ forj = 1,2,...,m (as farasy1 Y O), 

where (x, Y)B = (X, By), with B symmetric and positive definite, and T =1 if 
C = CT, T -1 if C = CT. 

For B = I and T= 1 we have the Lanczos scheme in the form as proposed by 
Paige [2]. The constants aj, P,f3 and YJ define a tridiagonal matrix Tm: 

a, 32 0 

T Y2 (2 133 

0 Ym am 
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THEOREM. If either C = CT or C = -CT and if B is a positive definite symmetric 
matrix and A = CB, then the generalized Lanczos scheme applied to A generates a 
tridiagonal matrix Tm, where limit-values of the eigenvalues of Tm, for increasing m, 
should be equal to the eigenvalues of A; but they may differ by a certain amount 
depending on the precision of computation. 

Proof. (i) For C = CT and B = I, the result is well known (Paige [2]). 
(ii) For C= _CT and B = I the proof is as follows: It is only necessary to 

establish that the generated row {Vk}, k 1,...,m, is an orthonormal row. The 
proof is by induction. Let {Vk}, k = 1,...,j, be an orthonormal row. Then we have 

for vJ+ 1 the relation 

YJ+ 1VJ+1 = CvJ -JVJ- -vajvj, 

where we assume that yJ+ 1 0 0, since in that case the recurrence relation terminates. 
Fork<j- 1, 

( YJ+ 1VJ+ 1I Vk) (CVJ - AIXVJ 1 - aj I Vk) = I(VJ CVk) 

- -(VJ yk+?lVk+?I + IkVk-I + akVk) 0. 

Fork=j- 1, 

(YJ+iVJ+?, vJ-1) = (CvJ, vJ1) - J(v1, vJ_1) (CvJ, v_)- J 

Since PiJ = -YJ = -(,yjv, vJ) = -(CvJ-1, vj) = (Cvj, vJ-1), it follows that 

(YJ+1V+?1, vJ-1) = 0. 
Fork = j, 

(Y1yj1vj?, vj) = (CvJ, vJ) -aj = 0. 

Finally we have 

(VJ+ 1 _J 1 AJAV_1aJv V-JJ -tV 

(A - UX -A u J vJ V) A 2- WJ vJ 1 . 

Thus the row {Vk}, k 1,... ,j + 1, is an orthonormal row. 
(iii) When C= CT and B is symmetric positive definite, B can be written as 

B = LLT, where L is lower triangular. (Note that the LLT-decomposition is not 
required during actual computation). 

Since the eigenvalues of CB are equal to those of LTCL, the original Lanczos 
scheme can be applied to LTCL (with the normal euclidean inner product). In this 
case we then have the relations 

aJ (VJ, LTCLVJ) and uJ + LTCLvJ + J + vJ) 

It follows that 

LUJ+1 = LLTCLVJl - 1- +,+1LVJ . 

If we replace x by LTi, then this equation can be rewritten as 

LLT1uj +I = LLTCLLJT +? - 13J+1LLTV 

UJ+1 = CBV)J+ 1-,B+ IV, = AVJ+ 1I - 
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The other Lanczos relations follow from 

azj = (LTCLVJ, VJ) =LTCLL T- , LT-J (CBV3J BV)J) = (Af)J , 

18J+ I = YJ2+1 =(WJ, wj) = (L WJ, L j ) = ( BWJJ WJ =( J J) B. 

The relations WJ = aJ - aV and 6j+I = 7j/yj+l are obvious. The vectors WJ VJ and 

QJ produce the desired result. 
(iv) The remaining case A = CB, where C _CT and B is symmetric positive 

definite, follows from the previous ones (withT = -1). 
The last part of the theorem, concerning the accuracy of the limit-values of the 

matrices Tm follows from Paige [2]. 
Remarks. 1. If C = _CT, we have that aj = 0 for allj. 
2. The above scheme allows for the computation of the eigenvalues of CB, which 

are equal to those of BC, without the explicit need for an LLTPfactorization of the 
matrix B. This makes the generalized schemes very attractive, especially if B has a 
sparse structure. However, it should be mentioned that eigenvectors cannot be 
computed by these schemes directly, since then an LLTPfactorization is required for a 
proper transformation. Eigenvectors may be computed by a Raleigh-quotient itera- 
tion scheme, once one has a fast solver for systems like Bx = y. 

3. We should like to mention briefly certain aspects of programming. For the 
generalized problem, the adapted schemes require only one extra matrix-vector 
multiplication and only one additional vector to store BwJ. Remember that BVJ can 
be computed from BVJ = Bwjtyj+ . The matrices A, B, and C do not have to be 
represented in the usual way as two-dimensional arrays of numbers, but as rules to 
compute the products Ax, Bx and Cx for any given x. This allows us to take full 
advantage of any sparsity structure. 

4. If C is skew-symmetric, then the generated matrices Tm are also skew-symmet- 
ric. Eigenvalues of a tridiagonal skew-symmetric matrix can be computed as follows. 
The matrix iTm is Hermitian and has real eigenvalues. Since, in the computation of 
the eigenvalues with Sturm-sequence, only squares of off-diagonal elements are 
involved, these eigenvalues can be computed without any complex computation. 
Once the eigenvalues of I Tm I have been computed, they should be multiplied by i so 
that they represent the eigenvalues of Tm. 

5. For practical algorithms for the selection of good eigenvalue approximations 
from the eigenvalues of Tm for those of A see Cullum and Willoughby [3], Parlett and 
Reid [4], or van Kats and van der Vorst [5]. 
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