A Generalized Lanczos Scheme

By H. A. van der Vorst*

Abstract

It is shown in this paper how the Lanczos algorithm can be generalized so that it applies to both symmetric and skew-symmetric matrices and corresponding generalized eigenvalue problems.

1. Introduction. The Lanczos scheme, designed for the computation of approximate eigenvalues of a symmetric matrix A (or order n), can be used also for the computation of eigenvalues of the product matrix $C B$, where C is symmetric and B is symmetric positive definite. This can be done simply by choosing another inner product, thus avoiding the necessity of constructing an $L L^{T}$-decomposition of B. The algorithm in this form is closely related to an algorithm published by Widlund [1], for the solution of certain nonsymmetric linear systems.

The generalized eigenvalue problem $C x=\lambda B x$ can be reduced to the above form by $C B^{-1} y=\lambda y$. In this case the new Lanczos scheme is attractive if fast solvers are available for the solution of linear systems of the form $B y=z$. The generalized algorithm is also applicable when C is skew-symmetric. This is achieved by introducing a minus sign in the appropriate place.
2. The Generalized Lanczos Scheme. Let A be of the form $A=C B$, where B is symmetric positive definite and C is either symmetric or skew-symmetric.
Then choose an arbitrary vector v_{1}, with $\left(v_{1}, v_{1}\right)_{B}=1$, and form $u_{1}=A v_{1}$. Rows $\left\{v_{j}\right\},\left\{\alpha_{j}\right\},\left\{\beta_{j}\right\}$, and $\left\{\gamma_{j}\right\}$ are then generated by

$$
\begin{gathered}
\alpha_{j}=\left(v_{J}, A v_{J}\right)_{B}, \quad w_{j}=u_{J}-\alpha_{J} v_{J}, \quad \gamma_{J+1}=\left(w_{J}, w_{J}\right)_{B}^{1 / 2}, \\
\beta_{J+1}=\tau \gamma_{J+1}, \quad v_{J+1}=\frac{1}{\gamma_{j+1}} w_{j}, \\
u_{J+1}=A v_{J+1}-\beta_{J+1} v_{J} \quad \text { for } j=1,2, \ldots, m\left(\text { as far as } \gamma_{J} \neq 0\right),
\end{gathered}
$$

where $(x, y)_{B}=(x, B y)$, with B symmetric and positive definite, and $\tau=1$ if $C=C^{T}, \tau=-1$ if $C=-C^{T}$.

For $B=I$ and $\tau=1$ we have the Lanczos scheme in the form as proposed by Paige [2]. The constants α_{j}, β_{j}, and γ_{j} define a tridiagonal matrix T_{m} :

$$
T_{m}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & \varnothing \\
\gamma_{2} & \alpha_{2} & \beta_{3} & & \\
& \ddots & \ddots & \ddots & \\
& \varnothing & \ddots & \gamma_{m} & \alpha_{m}
\end{array}\right)
$$

[^0]Theorem. If either $C=C^{T}$ or $C=-C^{T}$ and if B is a positive definite symmetric matrix and $A=C B$, then the generalized Lanczos scheme applied to A generates a tridiagonal matrix T_{m}, where limit-values of the eigenvalues of T_{m}, for increasing m, should be equal to the eigenvalues of A; but they may differ by a certain amount depending on the precision of computation.

Proof. (i) For $C=C^{T}$ and $B=I$, the result is well known (Paige [2]).
(ii) For $C=-C^{T}$ and $B=I$ the proof is as follows: It is only necessary to establish that the generated row $\left\{v_{k}\right\}, k=1, \ldots, m$, is an orthonormal row. The proof is by induction. Let $\left\{v_{k}\right\}, k=1, \ldots, j$, be an orthonormal row. Then we have for v_{J+1} the relation

$$
\gamma_{J+1} v_{J+1}=C v_{J}-\beta_{J} v_{J-1}-\alpha_{\jmath} v_{J}
$$

where we assume that $\gamma_{J+1} \neq 0$, since in that case the recurrence relation terminates.
For $k<j-1$,

$$
\begin{aligned}
\left(\gamma_{j+1} v_{\jmath+1}, v_{k}\right) & =\left(C v_{\jmath}-\beta_{j} v_{\jmath-1}-\alpha_{\jmath} v_{\jmath}, v_{k}\right)=-\left(v_{j}, C v_{k}\right) \\
& =-\left(v_{\jmath}, \gamma_{k+1} v_{k+1}+\beta_{k} v_{k-1}+\alpha_{k} v_{k}\right)=0
\end{aligned}
$$

For $k=j-1$,

$$
\left(\gamma_{J+1} v_{J+1}, v_{J-1}\right)=\left(C v_{J}, v_{J-1}\right)-\beta_{\jmath}\left(v_{J-1}, v_{J-1}\right)=\left(C v_{j}, v_{j-1}\right)-\beta_{J}
$$

Since $\beta_{J}=-\gamma_{J}=-\left(\gamma_{j} v_{J}, v_{J}\right)=-\left(C v_{J-1}, v_{J}\right)=\left(C v_{j}, v_{J-1}\right)$, it follows that $\left(\gamma_{J+1} v_{J+1}, v_{J-1}\right)=0$.

For $k=j$,

$$
\left(\gamma_{j+1} v_{j+1}, v_{j}\right)=\left(C v_{j}, v_{j}\right)-\alpha_{\jmath}=0
$$

Finally we have

$$
\begin{aligned}
\left(v_{J+1}, v_{J+1}\right) & =\frac{1}{\gamma_{J+1}^{2}}\left(A v_{J}-\beta_{j} v_{J-1}-\alpha_{J} v_{J}, A v_{J}-\beta_{j} v_{J-1}-\alpha_{J} v_{J}\right) \\
& =\frac{1}{\gamma_{J+1}^{2}}\left(u_{j}-\alpha_{J} v_{J}, u_{J}-\alpha_{J} v_{J}\right)=\frac{1}{\gamma_{J+1}^{2}}\left(w_{J}, w_{J}\right)=1
\end{aligned}
$$

Thus the row $\left\{v_{k}\right\}, k=1, \ldots, j+1$, is an orthonormal row.
(iii) When $C=C^{T}$ and B is symmetric positive definite, B can be written as $B=L L^{T}$, where L is lower triangular. (Note that the $L L^{T}$-decomposition is not required during actual computation).

Since the eigenvalues of $C B$ are equal to those of $L^{T} C L$, the original Lanczos scheme can be applied to $L^{T} C L$ (with the normal euclidean inner product). In this case we then have the relations

$$
\alpha_{J}=\left(v_{\jmath}, L^{T} C L v_{\jmath}\right) \quad \text { and } \quad u_{\jmath+1}=\left(L^{T} C L v_{\jmath+1}-\beta_{J+1} v_{\jmath}\right)
$$

It follows that

$$
L u_{J+1}=L L^{T} C L v_{J+1}-\beta_{J+1} L v_{\jmath} .
$$

If we replace x by $L^{T} \tilde{x}$, then this equation can be rewritten as

$$
\begin{aligned}
L L^{T} \tilde{u}_{J+1} & =L L^{T} C L L^{T} \tilde{v}_{J+1}-\beta_{J+1} L L^{T} \tilde{v}_{J} \\
\tilde{u}_{J+1} & =C B \tilde{v}_{J+1}-\beta_{J+1} \tilde{v}_{J}=A \tilde{v}_{J+1}-\beta_{J+1} \tilde{v}_{J} .
\end{aligned}
$$

The other Lanczos relations follow from

$$
\begin{aligned}
\alpha_{J} & =\left(L^{T} C L v_{j}, v_{j}\right)=\left(L^{T} C L L^{T} \tilde{v}_{J}, L^{T} \tilde{v}_{J}\right)=\left(C B \tilde{v}_{j}, B \tilde{v}_{J}\right)=\left(A \tilde{v}_{j}, \tilde{v}_{J}\right)_{B}, \\
\beta_{j+1}^{2} & =\gamma_{J+1}^{2}=\left(w_{j}, w_{J}\right)=\left(L^{T} \tilde{w}_{J}, L^{T} \tilde{w}_{J}\right)=\left(B \tilde{w}_{J}, \tilde{w}_{J}\right)=\left(\tilde{w}_{J}, \tilde{w}_{J}\right)_{B} .
\end{aligned}
$$

The relations $\tilde{w}_{j}=\tilde{u}_{j}-\alpha_{j} \tilde{v}_{J}$ and $\tilde{v}_{J+1}=\tilde{w}_{j} / \gamma_{J+1}$ are obvious. The vectors $\tilde{w}_{j}, \tilde{v}_{J}$, and $\tilde{u}_{,}$produce the desired result.
(iv) The remaining case $A=C B$, where $C=-C^{T}$ and B is symmetric positive definite, follows from the previous ones (with $\tau=-1$).

The last part of the theorem, concerning the accuracy of the limit-values of the matrices T_{m} follows from Paige [2].

Remarks. 1. If $C=-C^{T}$, we have that $\alpha_{J}=0$ for all j.
2. The above scheme allows for the computation of the eigenvalues of $C B$, which are equal to those of $B C$, without the explicit need for an $L L^{T}$-factorization of the matrix B. This makes the generalized schemes very attractive, especially if B has a sparse structure. However, it should be mentioned that eigenvectors cannot be computed by these schemes directly, since then an $L L^{T}$-factorization is required for a proper transformation. Eigenvectors may be computed by a Raleigh-quotient iteration scheme, once one has a fast solver for systems like $B x=y$.
3. We should like to mention briefly certain aspects of programming. For the generalized problem, the adapted schemes require only one extra matrix-vector multiplication and only one additional vector to store $B w_{j}$. Remember that $B v_{J}$ can be computed from $B v_{j}=B w_{j} / \gamma_{j+1}$. The matrices A, B, and C do not have to be represented in the usual way as two-dimensional arrays of numbers, but as rules to compute the products $A x, B x$ and $C x$ for any given x. This allows us to take full advantage of any sparsity structure.
4. If C is skew-symmetric, then the generated matrices T_{m} are also skew-symmetric. Eigenvalues of a tridiagonal skew-symmetric matrix can be computed as follows. The matrix $i T_{m}$ is Hermitian and has real eigenvalues. Since, in the computation of the eigenvalues with Sturm-sequence, only squares of off-diagonal elements are involved, these eigenvalues can be computed without any complex computation. Once the eigenvalues of $\left|T_{m}\right|$ have been computed, they should be multiplied by i so that they represent the eigenvalues of T_{m}.
5. For practical algorithms for the selection of good eigenvalue approximations from the eigenvalues of T_{m} for those of A see Cullum and Willoughby [3], Parlett and Reid [4], or van Kats and van der Vorst [5].

Academisch Computer Centrum Utrecht
Budapestlaan 6
Utrecht, The Netherlands

1. O. Widlund, "A Lanczos method for a class of non-symmetric systems of linear equations," SIAM J. Numer. Anal., v. 15, 1978, pp. 801-812.
2. C. C. Paige, "Computational variants of the Lanczos method for the eigenproblem," J. Inst. Math. Appl., v. 10, 1972, pp. 373-381.
3. J. Cullum \& R. A. Willoughby, "Fast modal analysis of large, sparse but unstructured symmetric matrices," Proc. 17th IEEE Conf. on Decision and Control, 1979.
4. B. Parlett \& J. K. Reid, "Tracking the progress of the Lanczos algorithm for large symmetric eigenproblems," IMA J. Numer. Anal., v. 1, 1981, pp. 135-155.
5. J. M. van Kats \& H. A. van der Vorst, Automatic Monitoring of Lanczos Schemes for Symmetric or Skew-Symmetric Generalized Eigenvalue Problems, Technical report TR-7, Academisch Computer Centrum Utrecht, 1977.

[^0]: Received March 15, 1978; revised May 7, 1981 and October 21, 1981.
 1980 Mathematics Subject Classification. Primary 65F15, 65N25.
 ${ }^{*}$ Supported in part by the European Research Office, London through Grant DAJA 37-80-C-0243.

